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Pattern formation in reaction diffusion systems is a
widely discussed topic in these days. Though it was
discovered more than a century ago [1], the mecha-
nism of this nonlinear phenomenon of self-formation
of patterns in systems is not yet fully understood. R. E.
Liesegang made the remarkable discovery of this phe-
nomenon in 1896 and since then many phenomeno-
logical investigators have suggested different theories
to explain their rhythmic structure. Owing to the com-
plexity of the structure and its dependence on a wide
range of physical parameters, all the experimental re-
sults could not satisfactorily be explained by the sug-
gested theories. Hence the mechanisms responsible
for these structures are still under discussion [2–4].
Recently the role of fast colloid dynamics in the for-
mation of Liesegang phenomenon has gathered at-
tention. Stern’s review [5] summarizes the important
experimental results of banded precipitation and pro-
vides critical comments on the various theories of peri-
odic precipitation. Survey of the literature shows some
more excellent and fascinating reviews on this subject
published recently [6, 7].

The formation of patterns is due to the diffusion of
the electrolyte (A) into a gelatinous medium impreg-
nated with another electrolyte (B) and the subsequent
chemical reaction. A striking feature is that these pat-
terns obey simple generic laws. After a transient time,
these bands appear at some positions xi and times ti and
have a width wi. It is first observed that the position xn
(measured from the initial interface of the reagents)
of the nth band is related to the time tn of its formation
through the so-called time law xn ∼ t1/2

n . Second, the ra-
tio between the positions of the adjacent bands xn+1/xn
approaches a constant value slightly above unity, called
spacing coefficient. Reverse banding also has been ob-
served in some systems where the ratio 0 ≤ xn+1/xn ≤
1. This experimental observation is usually referred to
as the spacing law. Finally, the width of the bands wn
varies linearly with the distance, wn ∼ xn.

In general, explanations of the Liesegang phe-
nomenon can be classified as either pre-nucleation or
post-nucleation processes. The former suggests that the
product of the reactants directly turn into a precipitate,
where the local concentration product reaches some
threshold. One can symbolize this process by the re-
action scheme A + B → D where D stands for the

precipitate state. According to the second scenario, the
two species A and B react to produce a new species
C, which represents a colloidal state. When the lo-
cal concentration of C reaches some threshold value,
nucleation occurs: the C particles precipitate and
become D particles at rest. Such processes can be
tagged with the following symbolic reaction scheme:
A + B → C → D.

Several authors have investigated the role of diffu-
sion in the process of periodic precipitation, by cal-
culating the diffusion coefficients of the A ions in the
gel medium [8–10], based on the simple mathematical
model suggested by Kirov [11]. The third author to-
gether with Ittyachen and Joseph has extended the said
theory to multi-component systems and the values of
the effective diffusion coefficients were estimated [12].

We have recently developed a simple model of band
formation [13, 14], termed as moving boundary model,
based on the assumption that the boundary which sep-
arates the outer ions and the inner electrolyte virtually
migrate into the positive direction of the advancement
of the A type ions. It has been known since the ear-
liest experiments of Liesegang [1] that optimum re-
sults for ring or band formation are obtained when
the initial concentration CA0 of the outer electrolyte
is much higher, preferably by several orders of magni-
tude greater than that of the initial concentration CB0 of
the inner electrolyte. In regular Liesegang experiments
one typically has 10 CB0 ≤ CA0 ≤ 200 CB0 [6]. Ini-
tially the boundary which separates A and B ions was
the gel solution interface which is chosen at x = 0 in the
y-z plane. When the first precipitation zone (ring) was
formed, the concentration of the outer ions gradually
builds up in the gel column and attains its maximum
value CA0 up to that zone. This assumption suggests
that the boundary of A type ions has been shifted up
to the new ring. The reservoir concentration CA0 of
the A type ions is sufficiently large, and presumably the
boundary migrates. This process will repeat in time and
the boundary region moves from one ring to the other.
As a result the concentration level of A species after a
ring is formed at any position xn is

CA(0 ≤ x ≤ xn, t ≤ tn) = CA0 (1)

where the suffix n denotes the ring number. The time
law in fact turns out from the Einstein-Smoluchowski
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solution for the random walk problem [15]. Theoretical
investigations based on Brownian motion consider the
“random walk” at the molecular level and the transitions
between closely neighboring states. The distance mea-
surement from the gel solution interface therefore could
not be sufficient to fit in the random walk conditions.
Based on the above assumptions, we have modified the
conventional time law, spacing law and the width law by
considering the separation between the rings as prime
parameter in distance measurements [13] as:

ξn ∼ τ 1/2
n (2)

ξn+1/ξn = (1 + p′) (3)

wn ∼ ξn (4)

where ξn is the inter ring spacing; here it may be read
as the spacing between the (n − 1)th and nth rings and
τn is the time taken for the appearance of the nth ring
after the (n − 1)th ring is formed.

The moving boundary model also enables us to de-
termine the diffusion coefficients of the advancing elec-
trolytes in the gelatinous medium. With a reasonable ap-
proximation that the boundary virtually migrates into
the medium with uniform velocity from one ring to
the other, one can deduce an expression for diffusion
coefficients [16] as:

DA = ξ 2
n /2τn (5)

This distance measurement as the authors have sug-
gested in our recent communications [13, 14] is com-
mensurate with the distance measured from the gel-
solution interface in other theories. With the values of
the diffusion coefficients estimated for various systems
in different gels, we have concluded that fast colloidal
dynamics play a pivotal role in the formation of these
periodic structures [16]. In this letter, we focus on to
the multi-component systems and draw the principles
of colloidal dynamics associated with the patterning.

During the crystallization of mixed rare earth ox-
alates in gel medium, two kinds of ring systems were
observed with lanthanum and copper as cations [17].
These experiments were performed in single glass tubes
containing a vertical column of sodium meta silicate
gel, uniformly charged with oxalic acid. Measured vol-
umes of lanthanum nitrate (LN) and copper nitrate (CN)
solutions were poured over the gel as the source of
cations. Well-defined periodic ring systems in the form
of micro crystals were visible after a few hours. When
the cations from the upper solution diffuse into the gel
and meet the oxalate ions, they combine to form mixed
oxalate crystals at discrete places separated by a dis-
tance dictated by the growth conditions of the system.
Since the two-component upper electrolyte system be-
haves similar to a single component system [17], dif-
fusion coefficients of the upper ions can be estimated
using Equation 4. From the observed rate of movement
of the advancing boundary, the diffusion coefficients
for the outer ions are estimated (Table I). The new
spacing coefficient ξn+1/ξn = (1 + p′) is also calculated
for each set of rings. Diffusion coefficients calculated

TABLE I Estimation of the diffusion coefficients of the outer
electrolytes: Inner electrolyte: 0.5 M oxalic acid, silica gel density: 1.03
g cm−3, pH ∼ 6.6

Outer electrolytes and DA × 1011

concentrations (M) Type of species (1 + p′) (m2 s−1)

0.4 CN and 0.5 LN I 1.143 7.828
II 1.126 8.905

0.6 CN and 0.5 LN I 1.130 4.981
II 1.128 7.286

0.5 CN and 0.2 LN I 1.120 5.850
II 1.117 6.451

ranges from 4.981 × 10−11 to 8.905 × 10−11 m2 s−1.
Calculations based on Einstein’s diffusion equation for
colloidal particles of diameter 20 nm in water at 20 ◦C
yield a value of diffusion coefficient equal to 2.15 ×
10−11m2 s−1 and 6.5 h for average Brownian displace-
ment in one direction by 1 mm [18]. The values obtained
by us are in fact 2–4 times greater than those quoted for
20 nm size colloidal particles.

Once a precipitation zone (ring) was established, up-
per ions may occupy up to that region and their concen-
trations reach their original level. It is to be noted that
a regular ring or band is formed when the concentra-
tion of the outer electrolyte is much larger than that of
the inner electrolyte [6]. Hence the number of particles
moving in the forward direction will be large compared
to the number of particles moving in the reverse di-
rection. This in fact supports Young’s conclusion [19]
that the particles diffuse without much molecular bom-
bardment. As the particles are not much encountering
with other particles inside the medium, they cross a
given distance in fewer steps and hence in shorter time.
This may be the reason for its fast diffusion and the
observed higher values of diffusion coefficients. Slow
coarsening of colloid particles is very essential for the
macroscopic pattern generation [20]. The particle size
therefore grows at a slow pace only, which also results
in considerably fast diffusion.

Thus the values of diffusion coefficients obtained for
various multi-component Liesegang systems are sug-
gestive of the fast colloidal dynamics during the process
of periodic structure formation.
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